Precedence Grammars

LR parsing is Bottom-Up. We want to find the parse that reverses the derivation that always expands the right-most non-terminal symbol.

Example for the grammar E::=E+T|T T::=T*F|F F::=id We derive and parse the string x+y*z Derivation:

E+T*E E+T*E E+T*z E+E*z E+Y*z T+Y*z F+Y*z x+y*z The parse we want reverses this.

Again the grammar is E:=E+T|T T:=T*F|F F:=id

We parse the string x+y*z

Terminology:

- 1. A <u>prime phrase</u> is the right side of any grammar rule.
- 2. A handle is the prime phrase that represents one step in the reversal of a right-most derivation.

Examples from the previous bottom-up parse. On each line the prime phrases are underlined and the handle is indicated with H.

Η

We will develop a series of increasingly general classes of grammars, building towards LR(k) grammars.

Def. A parenthesis grammar is one in which

- a) The right hand side of every rule is enclosed in parentheses.
- b) Parentheses occur nowhere else.
- c) No two rules have the same right hand side.

```
Example: S::= (aA) A ::= (Aa) | (a) | (SA) Consider parsing (a ((a (a)) ((a) a)))
```

```
(a ((a <u>(a)</u>) ((a) a)))
(a (<u>(a A)</u> ((a) a)))
(a (S (<u>(a)</u> a)))
(a (S <u>(A a)</u>))
(a <u>(S A)</u>)
(a A)
S
```

The parentheses make the prime phrases disjoint. The handle is always the leftmost prime phrase.

We can parse a parenthesis language with a stack machine:

- a) Start with an empty stack.
- b) At each step, if ")" is at the top of the stack, perform a reduction by popping the stack to the first "(" and pushing the appropriate non-terminal on the stack.
- c) The Start symbol should be on the stack at the end of the input.

Try this with the previous example. It works.

Def. A <u>simple precedence grammar</u> is one in which we can insert symbols "<", "=", and ">" to produce a language (treating "<" and ">" as parentheses) that can be parsed like a parenthesized grammar.

To parse a simple precedence language we need a <u>precedence</u> <u>table</u>. The entries are the new symbols "<", "=" and ">", indexed by the symbols that could be on the stack (all terminals and non-terminals) and any symbols we might push on the stack (also all terminals and non-terminals).

At each step we insert the symbol from the table between the current stack top and the new symbol to be pushed on. If the table entry is ">" we do a reduction before pushing anything new onto the stack.

We always start with "<" and the first token on the stack, and at EOF push ">". We should end with the Start symbol on the stack.

Example. Grammar S::=Aab A::=aS | c Precedence table:

	S	Α	а	b	С
S			>		
Α			II		
а	II	\	\	II	<
b			>		
С			>		

Try using this to parse acabab or aacababab

To generate the precedence table we need two relations: $\mathcal{L}(A)$ is the set of left-most symbols of strings generated from A. $\mathcal{R}(A)$ is the set of right-most symbols of strings generated from A.

These are easy to generate. For the grammar

$$S := Aab$$
 $\mathcal{L}(S)=\{A, a, c\}$ $\mathcal{R}(S)=\{b\}$

A ::= aS | c
$$\mathcal{L}(A) = \{a, c\}$$
 $\Re(A) = \{S, c, b\}$

To build the precedence table apply the following rules. The grammar is a simple precedence grammar if this can be done unambiguously.

- 1. Table[x,y] is "=" if there is a grammar rule A ::= $\alpha xy\beta$.
- 2. Table[x,y] is "<" if there is a non-terminal symbol A where Table[x,A] is "=" and y is in $\mathcal{L}(A)$. (We know we are starting a new A-rule)
- 3. Table[x,y] is ">" if there is a non-terminal symbol A where Table[A, y] is "=" and x is in $\Re(A)$. (Do the reduction to A before pushing y.)
- 4. Table[x,y] is ">" if there is a non-terminal symbol A where Table[A,y] is "<" and x is in $\Re(A)$. (Do the reduction to A as soon as possible.)

It should be easy to apply these rules to the grammar

S::= Aab
$$\mathcal{L}(S)=\{A, a, c\}$$
 $\mathcal{R}(S)=\{b\}$

$$\mathcal{R}(S)=\{b\}$$

$$A ::= aS \mid c$$

$$\mathcal{L}(A)=\{a,c\}$$

A ::= aS | c
$$\mathcal{L}(A)=\{a, c\}$$
 $\mathcal{R}(A)=\{S, c, b\}$

and get the table

	S	Α	а	b	С
S			>		
Α			=		
а	=	<	<	=	<
b			>		
С			>		

Problem: If we try to apply these rules to the grammar

 $E ::= E+T \mid T \qquad \mathcal{L}(E) = \{E,T,F,id\} \qquad \qquad \mathcal{R}(E) = \{T,F,id\}$ $T ::= T*F \mid F \qquad \mathcal{L}(T) = \{T,F,id\} \qquad \qquad \mathcal{R}(E) = \{F,id\}$

F := id $\mathcal{L}(F) = \{id\}$ $\mathcal{R}(F) = \{id\}$

we get the table

	E	Т	F	+	*	id
E				=		
Т				>	=	
F				>	>	
+		(<=)	<			<
*			=			<
id				>	>	

A <u>weak precedence grammar</u> is one where we can build the precedence table and have conflicts only between "<" and "=", and in such a way that we can still parse successfully. This means

- a) There are no conflicts between "<=" and ">".
- b) The right hand side of each grammar rule is unique.
- c) If there are rules A::= α y γ and B::= γ then we cannot have y <=B. This allows us to distinguish between possible handles.

Our common arithmetic grammar

is a weak precedence grammar. The precedence table is

	E	Т	F	+	*	id
E				II		
Т				>	II	
F				>	>	
+		<=	<			<
*			=			<
id				>	>	

We can parse expressions such as x+y+z and x+y*z

<u>Problem</u>: Weak precedence grammars have trouble recognizing errors; we often need to read well past the bad token before we recognize the error. As a result, they are seldom used in practice. This is just a step towards the derivation of LR(k) grammars.

Example: S::=a+x+E $\mathcal{L}(S)=\{a\}$ $\mathcal{R}(S)=\{E,a\}$ $\mathcal{R}(E)=\{E,a\}$

	S	E	а	+	X
S					
E					
а				=	
+		=	<		=
X				=	

If we try to parse a+a+a+a+a, the parser reads to the end of the string, reduces it all to an E, and then fails because this isn't the start symbol.